What Hinders the Adoption of Battery Electric Buses
In Transit:
A Techno-Economic Analysis

McMASTER INSTITUTE FOR

/1 TRANSPORTATION
'/" & LOGISTICS

November 29, 2018



Moataz Mohamed

Ph.D, MASc, BE, MILT, EIT

Assistant Professor of Smart Systems and Transportation
Department of Civil Engineering

McMaster University

MCMASLer | w e oo
University g3 Civil Engineering %gg%g%?f

&




The Social Costs and Benefits of Electric Mobility
in Canada

McMaASter | a ... e s o
Pt Civil Engineerin TRANSPORTATION
University @ g g E’& LOGISTICS



Timeline

E-BUS OPERATION
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Bus Transit In Canada

2014 Canadian Transit Fleet Size
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RESEARCH Focus 1
REVIEW OF ALTERNATIVE POWERTRAINS



Review e-Bus Technology

Charging Pantograph

Charging Station
Slow Fast
Charging Charging

AC mmPole DC

Overnight E-Bus Opportunity E-Bus Power Grid

Power Grid
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Mapping e-Bus Technology

Purchase Price

Availability
B ICE Diesel
O FCEB Hydrogen - Range WTT GHG Emission
Centeral NG5SR
O BEB - Overnight WTW Energy Consumption TTW GHG Emission
Electricity - ELY mix
) TTW Energy Consumption | WTW GHG Emission
BEB - Opportunity
Electricity - EL mix WTT Energy Consumption
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Research Findings

* Hybrid, CNG and the so called Clean Diesel will not achieve substantial

reductions in GHG emissions

* Battery electric technology should be couple with electricity profile
that produces no more than 600 tCO2e/GWh (Canada is 150)

* Electric buses are feasible for operation, despite the high capital cost
The Key question is

What Hinders the Adoption of E-buses in Canadian Transit?
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RESEARCH Focus 2
WHAT HINDERS THE ADOPTION OF E-Bus?



Participants

Transit Provider City, Province Population Served % of National Ridership  Fleet Size

TTC Toronto, ON 2,808,503 26.40% 1,869
HSR Hamilton, ON 490,000 1.10% 221
Windsor Transit Windsor, ON 210,891 0.31% 112
GRT Region of Waterloo, ON 434,437 1.07% 235
Metro Transit Halifax, NS 308,084 0.95% 312
Kings Transit Kentville, NS 42,500 0.02% 14
Fredericton Transit  Fredericton, NB 50,000 0.08% 27
Winnipeg Transit Winnipeg, MB 675,300 2.46% 583
Calgary Transit Calgary, AB 1,195,194 5.44% 1,053
OC Transpo Ottawa, ON 857,890 4.79% 936
STM Montreal, QC 1,959,987 20.56% 1,729
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Attitude Towards the e-Bus

The
“Guinea Pig”
Syndrome

Risk & Safety
Concerns

Ms,le\g?hs, Civil Engineering

" | would certainly

be pushing that the electric bus ——

would be the way that we need to SRR
, Anxiety

go down the road. But we don’t

like to be the guinea pigs with

technology

GRT, Region of Waterloo.

Show me a city that’s done it.
Show me their experience, show Lack of Canadian
me their mileage, maintenance operational data
history. that’s where we’re going
to get the real information

Metro Transit, Halifax. ”
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Operational Feasibility

" We got a new
bus that goes out for 22 hours or

so a day. And our range for one of
those buses is 400 miles. Just
before we get into those electric
buses we talked about, we’re not

Availability Network

Optimization

Total Cost of even close. Technology
Ownership TTC, Toronto. Choice

| don’t think it will be usable for
every service, there’ll be very
specific ones... it will take a lot of
work to work through the steps of
how you select your routes | think.

Calgary Transit, Calgary. ”

Human

Standardization
Resources
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Decision-Making & Fleet Management

" We’re very risk-
Risk Averse DM adverse ... when you’re dealing with a The U.S Market
large volume of public funds, electric Influence

buses really got to be a proven
technology and a cost-effective
technology I think

Metro Transit, Halifax

We purchase new vehicles to replace

old vehicles that were built in the early

80s. Environmentally it made more

sense to replace more of those with Procurement
new clean diesel than replacing a Process
smaller number with a hybrid that was
only marginally more fuel efficient”

Winnipeg transit, Winnipeg. ”

Replacement
First
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Developing A Business Case

Top-down
Approach

Political
Intervention

Mgle\ﬁls?{}s, Civil Engineering

" Well typically | think it would
come top-down... doing those things
in isolation don’t really help, you
know? ....There needs to be something
on a more... on a higher level | think
Calgary Transit, Calgary.

There’s nothing like having a
successful operation over a period of
time that yields positive benefits to
have other people want to jump on.
There needs to be targeted efforts at a
controlled number of locations to
make the changes necessary for this
to, really work.

Winnipeg Transit, Winnipeg. ”

Canadian Full-
network
databank

Regulatory
Environment
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Service Providers Perspective

Attitude . Decision
Operational .
towards E- A making
Feasibility

bus process
Risk
Oper.
Cost
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A Framework for Bus Transit Electrification

Feedback

McMaster

University @

R&D and
Standardization

Political Support

(Finance & Regulations)

Demonstrations
(Full Network)

4
Canadian
Databanks

Proposed Interventions

Civil Engineering

Electrical technology is viable,

Passengers demand reliability, not green technology,
Contributes to GHG reduction,
Future implementation only,
High risk being the first,

Need someone else to test it, i
Fear of of obsolescence, Atmude_towards
Lack of R&D direction, electric bus
No practical Canadian data,

Various unknowns in operations,

Health and safety for passengers & employee,
Safety standards for high voltage exposure,
Range

Charging time,

Overnight electric buses,

Opportunity electric buses,

- Battery-Trolley electric buses,

Route selection,

Operational flexibility,
Interlining versus fixed routes,
Increased fleet size,
pochans, Operational feasibility
Human resources, of electric bus
Capital cost.

Operational cost,

Leasing,

Infrastructure cost,

Fuel saving & electricity rates,
Human resource cost

Total cost of ownership,
Standards,

The role of CUTA & APTA,

No Green/electric policy in place,

- Risk free Decision making process,

Multiple criteria/department involve,

Reliability/cost driven decision making,

Replacement first, . .

Age driven strategy, Decision-making & fleet
Performance requirements force E-bus out,
Technology change is not often considered renewal strategy
Eliminating old diesel is a priority,

Manufactures and meeting performance requirements,

U.S. guide market direction not Canada,

Different priorities for manufactures and providers,

Top down approach is the only solution

Providers can't act in isolation,

- Federal government is the key player

Provinces and municipalities are key building blocks,
Federal incentives, : :
Piloting is the only feasible solution, Developlng a business
City/network choice are key for successful pilots, case

Data banks for E-bus in Canada

Regulation for on-route chargers,

Acquisition regulations & contracting,

Expected Influences

Themes ——~— Categories —+
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So what?
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Optimize and Predict Everything
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RESEARCH Focus 3
OPERATIONAL FEASIBILITY AND UTILITY IMPACT



Simulation Model

Operation Constraints
* Fixed fleet size
e Satisfy timetable

e Minimum number of

chargers

e Using currently available

technology
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Simulation of Belleville Transit
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Charging Profile
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e-Bus Energy Demand
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Scenario 2-A
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e-Bus Utility Impacts
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Research Findings

* Predominantly, energy demand and the charging behavior of each
BEB configuration were very distinct.

* OQOverall, flash electric bus coupled with fast-charging technology is
shown to offer superior operation compared to other configurations.

* From utility perspective, operating flash and opportunity electric
buses require a service transformer of a size 5-6 times that required
from overnight operation.

* Taken together, operational feasibility simulation and grid impact
models generate contradictory recommendations.

* This outcome in itself is significant, as it highlights the need to
consider both operational constraints and grid impacts
simultaneously
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RESEARCH Focus 4
OPTIMAL SIZING AND SYSTEM CONFIGURATION



Optimization of e-Bus System Configuration

Substation
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Sizing e-Bus Components
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RESEARCH FOCus 5
UNCERTAINTY ANALYSIS



The Impact of Route Topology
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CLOSING REMARKS!



What we have learned?

A mix of overnight and on-route e-Buses is required, yet it might
hinder the operational flexibility.

* e-Bus operation is very sensitive to context; different operational
approaches are recommended for fixed-route vs interlining operation.

* Bus barn upgrade is expected especially for the overnight e-Bus due to
its weight.

* The guinea pig syndrome is a significant hurdle, incentives should be
offered to mitigate this syndrome.
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What we have learned? Utility Vs. Operation

* Predominantly, energy demand and the charging behavior of each e-
Bus configuration are very distinct.

* Overall, the on-route electric bus coupled with fast-charging
technology is shown to offer superior operation compared to other
configurations.
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What we have learned? Utility Vs. Operation

* From a utility perspective, operating on-route e-buses require a
service transformer of a size 5-6 times that required from the
overnight operation.

» Taken together, operational feasibility simulation and grid impact
models generate contradictory recommendations.

* This outcome in itself is significant, as it highlights the need to
consider both operational constraints and utility impact
simultaneously.
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Thank You!

Email: mmohame@mcmaster.ca

Twitter @Moataz_ Mmohamed
https://www.eng.mcmaster.ca/civil/people/faculty/moataz-mohamed
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